Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.851
Filtrar
1.
Adv Exp Med Biol ; 1410: 115-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36289161

RESUMO

Drug resistance in leukaemia is a major problem that needs to be addressed. Precision medicine provides an avenue to reduce drug resistance through a personalised treatment plan. It has helped to better stratify patients based on their molecular profile and therefore improved the sensitivity of patients to a given therapeutic regimen. However, therapeutic options are still limited for patients who have already been subjected to many lines of chemotherapy. The process of designing and developing new drugs requires significant resources, including money and time. Drug repurposing has been explored as an alternative to identify effective drug(s) that could be used to target leukaemia and lessen the burden of drug resistance. The drug repurposing process usually includes preclinical studies with drug screening and clinical trials before approval. Although most of the repurposed drugs that have been identified are generally safe for leukaemia treatment, they seem not to be good candidates for monotherapy but could have value in combination with other drugs, especially for patients who have exhausted therapeutic options. In this review, we highlight precision medicine in leukaemia and the role of drug repurposing. Specifically, we discuss the several screening methods via chemoinformatic, in vitro, and ex vivo that have facilitated and accelerated the drug repurposing process.


Assuntos
Reposicionamento de Medicamentos , Leucemia , Medicina de Precisão , Humanos , Reposicionamento de Medicamentos/métodos , Medicina de Precisão/métodos , Leucemia/terapia , Ensaios de Seleção de Medicamentos Antitumorais/métodos
2.
J Oleo Sci ; 71(2): 267-276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35110468

RESUMO

In this study, it is recorded the inhibition effect of Thalassiolin B on aldose reductase, alpha-glucosidase and alpha-amylase enzymes. In the next step, the molecular docking method was used to compare the biological activities of the Thalassiolin B molecule against enzymes formed from the assembly of proteins. In these calculations, the enzymes used are Aldose reductase, Alpha-Amylase, and Alpha-Glucosidase, respectively. After the docking method, ADME/T analysis of Thalassiolin B molecule was performed to be used as a drug in the pharmaceutical industry. In the MTT assay, the anti-human colon cancer properties of Thalassiolin B against EB, LS1034, and SW480 cell lines were investigated. The cell viability of Thalassiolin B was very low against human colon cancer cell lines without any cytotoxicity on the human normal (HUVEC) cell line. The IC50 of the Thalassiolin B against EB, LS1034, and SW480 were 483, 252, and 236 µg/mL, respectively. Thereby, the best cytotoxicity results and anti-human colon cancer potentials of our Thalassiolin B were observed in the case of the SW480 cell line. Maybe the anti-human colon cancer properties of Thalassiolin B are related to their antioxidant effects.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Antineoplásicos Fitogênicos , Antioxidantes , Produtos Biológicos/farmacologia , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Flavonoides/farmacologia , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular/métodos , alfa-Amilases/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana , Humanos , alfa-Glucosidases
3.
Sci Rep ; 12(1): 2319, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149728

RESUMO

RECK encodes a membrane-anchored protease-regulator which is often downregulated in a wide variety of cancers, and reduced RECK expression often correlates with poorer prognoses. In mouse models, forced expression of RECK in tumor xenografts results in suppression of tumor angiogenesis, invasion, and metastasis. RECK mutations, however, are rare in cancer genomes, suggesting that agents that re-activate dormant RECK may be of clinical value. We found a potent RECK-inducer, DSK638, that inhibits spontaneous lung metastasis in our mouse xenograft model. Induction of RECK expression involves SP1 sites in its promoter and may be mediated by KLF2. DSK638 also upregulates MXI1, an endogenous MYC-antagonist, and inhibition of metastasis by DSK638 is dependent on both RECK and MXI1. This study demonstrates the utility of our approach (using a simple reporter assay followed by multiple phenotypic assays) and DSK638 itself (as a reference compound) in finding potential metastasis-suppressing drugs.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Metástase Neoplásica/prevenção & controle , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Genes Reporter , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Life Sci ; 295: 120380, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35143825

RESUMO

AIMS: the main purpose of this study was to identify new selective antitumor agents. MAIN METHODS: several hydrazonoyl chlorides (HCs) were synthesized and human tumor cell line viability was determined using the MTT assay. Tumor development was assessed using Ehrlich ascites carcinoma (EAC)-bearing mice. KEY FINDINGS: our results showed that 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride (compound 4; CPD 4) and 2-oxo-2-(phenylamino)-N-(p-tolyl)acetohydrazonoyl chloride (CPD 5) were the most cytotoxic HCs to human cervical tumor HeLa (IC50: 20 and 25 µM for CPD 4 and 5 respectively), breast MCF7 (IC50: 29 and 34 µM for CPD 4 and 5 respectively) and colon HCT116 cancer cells (IC50: 26 and 25 µM for CPD 4 and 5 respectively) with the least cytotoxicity to human non-tumor CCD-18Co colon fibroblasts as well as murine splenocytes. The active compounds significantly inhibited colony formation as well as tumor development in EAC-bearing mice. We also observed that PTEN-deficient cells displayed greater sensitivity than cells expressing wild type PTEN. At the molecular level, comet and cell cycle analyses indicated that the active compounds generate DNA damage. In light of the PTEN-dependent sensitivity and genomic instability we examined the influence of HCs on the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) and the PI3K/AKT/mTOR pathway, which are each known to be synthetic lethal with PTEN. We found that both PNKP and the PI3K/AKT/mTOR pathway to be adversely affected by the HCs, which may partially account for their toxicity. SIGNIFICANCE: hydrazonoyl chlorides can be considered as hit compounds for the development of new antitumor agents.


Assuntos
Antineoplásicos/síntese química , Hidrazonas/síntese química , Hidrazonas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cloretos/química , Cloretos/farmacologia , Enzimas Reparadoras do DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Hidrazonas/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
5.
Sci Rep ; 12(1): 2886, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190616

RESUMO

In our search for novel small molecules activating procaspase-3, we have designed and synthesized two series of novel (E)-N'-arylidene-2-(2-oxoindolin-1-yl)acetohydrazides (4) and (Z)-2-(5-substituted-2-oxoindolin-1-yl)-N'-(2-oxoindolin-3-ylidene)acetohydrazides (5). Cytotoxic evaluation revealed that the compounds showed notable cytotoxicity toward three human cancer cell lines: colon cancer SW620, prostate cancer PC-3, and lung cancer NCI-H23. Especially, six compounds, including 4f-h and 4n-p, exhibited cytotoxicity equal or superior to positive control PAC-1, the first procaspase-3 activating compound. The most potent compound 4o was three- to five-fold more cytotoxic than PAC-1 in three cancer cell lines tested. Analysis of compounds effects on cell cycle and apoptosis demonstrated that the representative compounds 4f, 4h, 4n, 4o and 4p (especially 4o) accumulated U937 cells in S phase and substantially induced late cellular apoptosis. The results show that compound 4o would serve as a template for further design and development of novel anticancer agents.


Assuntos
Antineoplásicos , Desenho de Fármacos , Ativadores de Enzimas , Hidrazinas/síntese química , Hidrazinas/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Neoplasias Pulmonares/patologia , Masculino , Neoplasias da Próstata/patologia
6.
Cell Mol Life Sci ; 79(1): 34, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989869

RESUMO

New therapeutic targets that could improve current antitumor therapy and overcome cancer resistance are urgently needed. Promising candidates are lysosomal cysteine cathepsins, proteolytical enzymes involved in various critical steps during cancer progression. Among them, cathepsin X, which acts solely as a carboxypeptidase, has received much attention. Our results indicate that the triazole-based selective reversible inhibitor of cathepsin X named Z9 (1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-((4-isopropyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-one) significantly reduces tumor progression, both in vitro in cell-based functional assays and in vivo in two independent tumor mouse models: the FVB/PyMT transgenic and MMTV-PyMT orthotopic breast cancer mouse models. One of the mechanisms by which cathepsin X contributes to cancer progression is the compensation of cathepsin-B activity loss. Our results confirm that cathepsin-B inhibition is compensated by an increase in cathepsin X activity and protein levels. Furthermore, the simultaneous inhibition of both cathepsins B and X with potent, selective, reversible inhibitors exerted a synergistic effect in impairing processes of tumor progression in in vitro cell-based assays of tumor cell migration and spheroid growth. Taken together, our data demonstrate that Z9 impairs tumor progression both in vitro and in vivo and can be used in combination with other peptidase inhibitors as an innovative approach to overcome resistance to antipeptidase therapy.


Assuntos
Catepsina B/antagonistas & inibidores , Catepsinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Carga Tumoral/efeitos dos fármacos , Animais , Catepsina B/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/química , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos Transgênicos , Invasividade Neoplásica , Infiltração de Neutrófilos/efeitos dos fármacos
7.
Theranostics ; 12(2): 474-492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976196

RESUMO

When several life-prolonging drugs are indicated for cancer treatment, predictive drug-response tumor biomarkers are essential to guide management. Most conventional biomarkers are based on bulk tissue analysis, which cannot address the complexity of single-cell heterogeneity responsible for drug resistance. Therefore, there is a need to develop alternative drug response predictive biomarker approaches that could directly interrogate single-cell and whole population cancer cell drug sensitivity. In this study, we report a novel method exploiting bioluminescence microscopy to detect single prostate cancer (PCa) cell response to androgen receptor (AR)-axis-targeted therapies (ARAT) and predict cell population sensitivity. Methods: We have generated a new adenovirus-delivered biosensor, PCA3-Cre-PSEBC-ITSTA, which combines an integrated two-step transcriptional amplification system (ITSTA) and the activities of the prostate cancer antigen 3 (PCA3) and modified prostate-specific antigen (PSEBC) gene promoters as a single output driving the firefly luciferase reporter gene. This system was tested on PCa cell lines and on primary PCa cells. Single cells, exposed or not to ARAT, were dynamically imaged by bioluminescence microscopy. A linear discriminant analysis (LDA)-based method was used to determine cell population sensitivities to ARAT. Results: We show that the PCA3-Cre-PSEBC-ITSTA biosensor is PCa-specific and can dynamically monitor single-cell AR transcriptional activity before and after ARAT by bioluminescence microscopy. After biosensor transduction and bioluminescence microscopy single-cell luminescence dynamic quantification, LDA analysis could discriminate the cell populations overall ARAT sensitivity despite heterogeneous single-cell responses. Indeed, the biosensor could detect a significant decrease in AR activity following exposure to conventional ARAT in hormone-naive primary PCa cells, while in castration-resistant PCa patients, treatment response correlated with the observed clinical ARAT resistance. Conclusion: The exploitation of bioluminescence microscopy and multi-promoter transcriptionally-regulated biosensors can aptly define the overall treatment response of patients by monitoring live single cell drug response from primary cancer tissue. This approach can be used to develop predictive biomarkers for drug response in order to help clinicians select the best drug combinations or sequences for each patient.


Assuntos
Técnicas Biossensoriais/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Microscopia/métodos , Transcrição Gênica , Animais , Antígenos de Neoplasias/genética , Linhagem Celular , Calicreínas/genética , Luminescência , Camundongos , Regiões Promotoras Genéticas , Antígeno Prostático Específico/genética , Transcrição Gênica/efeitos dos fármacos
8.
Sci Rep ; 12(1): 1488, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087119

RESUMO

Gastric cancer (GC) is the third cause of cancer-related mortality worldwide and is often diagnosed at advanced stages of the disease. This makes the development of more comprehensive models and efficient treatments crucial. One option is based on repurposing already marketed drugs as adjuvants to chemotherapy. Accordingly, we have previously developed the combination of docetaxel and the cholesterol-lowering drug, lovastatin, as a powerful trigger of HGT-1 human GC cells' apoptosis using 2D cultures. Because 3D models, known as spheroids, are getting recognized as possibly better suited than 2Ds in toxicological research, we aimed to investigate the efficacy of this drug combination with such a model. We established monocellular spheroids from two human (GC) cell lines, HGT-1 and AGS, and bicellular spheroids from these cells mixed with cancer-associated fibroblasts. With these, we surveyed drug-induced cytotoxicity with MTT assays. In addition, we used the Incucyte live imaging and analysis system to follow spheroid growth and apoptosis. Taken together, our results showed that the lovastatin + docetaxel combination was an efficient strategy to eliminate GC cells grown in 2D or 3D cultures, lending further support in favor of repurposing lovastatin as an adjuvant to taxane-based anticancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Microscopia Intravital/métodos , Esferoides Celulares/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Fibroblastos Associados a Câncer , Técnicas de Cultura de Células em Três Dimensões , Linhagem Celular Tumoral , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Reposicionamento de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Neoplasias Gástricas/patologia
9.
Clin Transl Med ; 12(1): e678, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35075805

RESUMO

BACKGROUND: Gallbladder carcinoma (GBC) is a relatively rare but highly aggressive cancer with late clinical detection and a poor prognosis. However, the lack of models with features consistent with human gallbladder tumours has hindered progress in pathogenic mechanisms and therapies. METHODS: We established organoid lines derived from human GBC as well as normal gallbladder and benign gallbladder adenoma (GBA) tissues. The histopathology signatures of organoid cultures were identified by H&E staining, immunohistochemistry and immunofluorescence. The genetic and transcriptional features of organoids were analysed by whole-exome sequencing and RNA sequencing. A set of compounds targeting the most active signalling pathways in GBCs were screened for their ability to suppress GBC organoids. The antitumour effects of candidate compounds, CUDC-101 and CUDC-907, were evaluated in vitro and in vivo. RESULTS: The established organoids were cultured stably for more than 6 months and closely recapitulated the histopathology, genetic and transcriptional features, and intratumour heterogeneity of the primary tissues at the single-cell level. Notably, expression profiling analysis of the organoids revealed a set of genes that varied across the three subtypes and thus may participate in the malignant progression of gallbladder diseases. More importantly, we found that the dual PI3K/HDAC inhibitor CUDC-907 significantly restrained the growth of various GBC organoids with minimal toxicity to normal gallbladder organoids. CONCLUSIONS: Patient-derived organoids are potentially a useful platform to explore molecular pathogenesis of gallbladder tumours and discover personalized drugs.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias da Vesícula Biliar/diagnóstico , Modelos Biológicos , Organoides/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaios de Seleção de Medicamentos Antitumorais/estatística & dados numéricos , Detecção Precoce de Câncer/instrumentação , Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/estatística & dados numéricos , Feminino , Neoplasias da Vesícula Biliar/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Medicina de Precisão/instrumentação , Medicina de Precisão/métodos , Medicina de Precisão/estatística & dados numéricos , Sequenciamento do Exoma/métodos , Sequenciamento do Exoma/estatística & dados numéricos
10.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054773

RESUMO

Proton beam therapy (PBT) is a critical treatment modality for head and neck squamous cell carcinoma (HNSCC). However, not much is known about drug combinations that may improve the efficacy of PBT. This study aimed to test the feasibility of a three-dimensional (3D) tumor-spheroid-based high-throughput screening platform that could assess cellular sensitivity against PBT. Spheroids of two HNSCC cell lines-Fadu and Cal27-cultured with a mixture of Matrigel were arrayed on a 384-pillar/well plate, followed by exposure to graded doses of protons or targeted drugs including olaparib at various concentrations. Calcein staining of HNSCC spheroids revealed a dose-dependent decrease in cell viability for proton irradiation or multiple targeted drugs, and provided quantitative data that discriminated the sensitivity between the two HNSCC cell lines. The combined effect of protons and olaparib was assessed by calculating the combination index from the survival rates of 4 × 4 matrices, showing that Cal27 spheroids had greater synergy with olaparib than Fadu spheroids. In contrast, adavosertib did not synergize with protons in both spheroids. Taken together, we demonstrated that the 3D pillar/well array platform was a useful tool that provided rapid, quantitative data for evaluating sensitivity to PBT and drug combinations. Our results further supported that administration of the combination of PBT and olaparib may be an effective treatment strategy for HNSCC patients.


Assuntos
Quimiorradioterapia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Terapia com Prótons , Esferoides Celulares , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos
11.
Adv Drug Deliv Rev ; 182: 114111, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031388

RESUMO

Advances in 3D cell culture, microscale fluidic control, and cellular analysis have enabled the development of more physiologically-relevant engineered models of human organs with precise control of the cellular microenvironment. Engineered models have been used successfully to answer fundamental biological questions and to screen therapeutics, but these often neglect key elements of the immune system. There are immune elements in every tissue that contribute to healthy and diseased states. Including immune function will be essential for effective preclinical testing of therapeutics for inflammatory and immune-modulated diseases. In this review, we first discuss the key components to consider in designing engineered immune-competent models in terms of physical, chemical, and biological cues. Next, we review recent applications of models of immunity for screening therapeutics for cancer, preclinical evaluation of engineered T cells, modeling autoimmunity, and screening vaccine efficacy. Future work is needed to further recapitulate immune responses in engineered models for the most informative therapeutic screening and evaluation.


Assuntos
Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sistema Imunitário/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Engenharia Tecidual/métodos , Fatores Etários , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Técnicas de Cultura de Células em Três Dimensões , Liberação Controlada de Fármacos , Modelos Biológicos , Fatores Sexuais
12.
Chem Biol Interact ; 352: 109784, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34932952

RESUMO

Disrupting the dynamics and structures of microtubules can perturb mitotic spindle formation, cause cell cycle arrest in G2/M phase, and subsequently lead to cellular death via apoptosis. In this investigation, the structure-based virtual screening methods, including molecular docking and rescoring, and similarity analysis of interaction molecular fingerprints, were developed to discover novel tubulin inhibitors from ChemDiv database with 1,601,806 compounds. The screened compounds were further filtered by PAINS, ADME/T, Toxscore, SAscore, and Drug-likeness analysis. Finally, 17 hit compounds were selected, and then submitted to the biologic evaluation. Among these hits, the P2 exhibited the strongest antiproliferative activity against four tumor cells including HeLa, HepG2, MCF-7, and A549. The in vitro tubulin polymerization assay revealed P2 could promote tubulin polymerization in a dose dependent manner. Finally, in order to analyze the interaction modes of complexes, the molecular dynamics simulation was performed to investigate the interactions between P2 and tubulin. The molecular dynamics simulation analysis showed that P2 could stably bind to taxane site, induced H6-H7, B9-B10, and M-loop regions changes. The ΔGbind energies of tubulin-P2 and tubulin-paclitaxel were -68.25 ± 12.98 and -146.05 ± 16.17 kJ mol-1, respectively, which were in line with the results of the experimental test. Therefore, P2 has been well characterized as lead compounds for developing new tubulin inhibitors with potential anticancer activity.


Assuntos
Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Interface Usuário-Computador
13.
Hum Cell ; 35(1): 392-399, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34731453

RESUMO

Giant cell tumor of bone (GCTB) is a rare osteolytic intermediate bone tumor that harbors a pathogenic H3F3A gene mutation and exhibits characteristic histology. The standard curative treatment for GCTB is complete surgical resection, but it frequently results in local recurrence and, more rarely, metastasis. Therefore, effective multidisciplinary treatment is needed. Although patient-derived tumor cell lines are promising tools for preclinical and basic research, there are only four available cell lines for GCTB in public cell banks. Thus, the aim of this study was to establish a novel GCTB cell line. Using surgically resected tumor tissues from a patient with GCTB, we established a cell line named NCC-GCTB4-C1. The cells harbored the typical H3F3A gene mutation and exhibited constant proliferation and invasive capabilities. After characterizing NCC-GCTB4-C1 cell behaviors, we conducted high-throughput screening of 214 anti-tumor drugs and identified seven effective drugs. Comparing the results of high-throughput screening using NCC-GCTB4-C1 cell line with the results using NCC-GCTB1-C1, NCC-GCTB2-C1, and NCC-GCTB3-C1 cell lines that we previously established, four drugs were in common effective. This study showed potential drugs for the treatment of GCTB. These data indicate that NCC-GCTB4-C1 has the potential to be a powerful tool in preclinical and basic research on GCTB.


Assuntos
Neoplasias Ósseas/patologia , Tumor de Células Gigantes do Osso/patologia , Antineoplásicos/farmacologia , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Tumor de Células Gigantes do Osso/genética , Histonas/genética , Humanos , Lipídeos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica
14.
Br J Haematol ; 196(3): 764-768, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34816427

RESUMO

Approximately 20% of patients with transient abnormal myelopoiesis (TAM) die due to hepatic or multiorgan failure. To identify potential new treatments for TAM, we performed in vitro drug sensitivity testing (DST) using the peripheral blood samples of eight patients with TAM. DST screened 41 agents for cytotoxic properties against TAM blasts. Compared with the reference samples of healthy subjects, TAM blasts were more sensitive to glucocorticoids, the mitogen-activated protein kinase kinase (MAP2K) inhibitor trametinib, and cytarabine. Our present results support the therapeutic potential of glucocorticoids and the role of the RAS/MAP2K signalling pathway in TAM pathogenesis.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Reação Leucemoide/tratamento farmacológico , Mielopoese/efeitos dos fármacos , Adulto , Antineoplásicos/uso terapêutico , Biomarcadores , Técnicas de Cultura de Células , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala , Humanos , Imuno-Histoquímica , Reação Leucemoide/etiologia , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade
15.
Bull Cancer ; 109(1): 49-57, 2022 Jan.
Artigo em Francês | MEDLINE | ID: mdl-34848046

RESUMO

Cell culture is an important and necessary technology in oncology research. Currently, two-dimensional (2D) cell culture models are the most widely used, but they cannot reproduce the complexity and pathophysiology of tumors in vivo. This may be a major cause of the high rate of attrition of anticancer drugs entering clinical trials, the rate of new anticancer drugs entering the market being less than 5 %. One way to improve the success of new cancer drugs in the clinic is based on the use of three-dimensional (3D) cell culture models, more able to represent the complex environment and architecture of tumors. These 3D culture systems are also a powerful research tool for modeling the evolution of cancer from early stages to metastasis. Spheroids and organoids, the most adaptable models among 3D culture systems, are beginning to be used in pharmaceutical research and personalized medicine. In this article, we review the use of spheroids and organoids by highlighting their differences, discussing their impact on drug development, and looking at future challenges.


Assuntos
Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células em Três Dimensões/métodos , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Organoides , Esferoides Celulares , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Modelos Biológicos , Neoplasias/patologia , Organoides/efeitos dos fármacos , Organoides/patologia , Medicina de Precisão , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Células Tumorais Cultivadas , Microambiente Tumoral
16.
Hum Cell ; 35(1): 23-36, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34761350

RESUMO

The tumor microenvironment contributes significantly to tumor initiation, progression, and resistance to chemotherapy. Much of our understanding of the tumor and its microenvironment is developed using various methods of cell culture. Throughout the last two decades, research has increasingly shown that 3D cell culture systems can remarkably recapitulate the complexity of tumor architecture and physiology compared to traditional 2D models. Unlike the flat culture system, these novel models enabled more cell-cell and cell-extracellular matrix interactions. By mimicking in vivo microenvironment, 3D culture systems promise to become accurate tools ready to be used in diagnosis, drug screening, and personalized medicine. In this review, we discussed the importance of 3D culture in simulating the tumor microenvironment and focused on the effects of cancer cell-microenvironment interactions on cancer behavior, resistance, proliferation, and metastasis. Finally, we assessed the role of 3D cell culture systems in the contexts of drug screening. 2D culture system is used to study cancer cell growth, progression, behavior, and drug response. It provides contact between cells and supports paracrine crosstalk between host cells and cancer cells. However, this system fails to simulate the architecture and the physiological aspects of in vivo tumor microenvironment due to the absence of cell-cell/ cell-ECM interactions as well as unlimited access to O2 and nutrients, and the absence of tumor heterogeneity. Recently advanced research has led researchers to generate 3D culture system that can better recapitulate the in vivo environment by providing hypoxic medium, facilitating cell-cell and cell-ECM, interactions, and recapitulating heterogeneity of the tumor. Several approaches are used to maintain and expand cancer cells in 3D culture systems such as tumor spheroids (cell aggregate that mimics the in vivo growth of tumor cells), scaffold-based approaches, bioreactors, microfluidic derives, and organoids. 3D systems are currently used for disease modeling and pre-clinical drug testing.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Neoplasias/patologia , Microambiente Tumoral , Antineoplásicos/farmacologia , Comunicação Celular , Proliferação de Células , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Matriz Extracelular , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Células Tumorais Cultivadas
17.
Anticancer Drugs ; 33(1): 6-10, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261912

RESUMO

Anticancer drug discovery programmes use a large number of in-vitro assays to screen the potency of compound libraries. The accuracy and reliability of these in-vitro assays are vital in selecting potent lead candidates for further (pre)clinical studies. Among the commonly used cell viability assays, the sulforhodamine B (SRB) assay has been a popular choice due to its simplicity, accuracy, reliability and reproducibility. SRB dye interacts with protein's basic amino acids and viable cell number is determined based on the cellular protein content. In this study, the cytotoxic potency of the novel hydroxythiopyridone derivatives towards A549 and H522 cells was determined using the SRB assay. The known drugs oxaliplatin and vorinostat were also examined. The resulting EC50 values were accurate, reliable and reproducible. However, all EC50 values calculated in 6-well plates were higher compared to those determined from 96-well plates. Furthermore, results from 6-well plates were also more variable compared to 96-well plates. Our results confirm that SRB assay is a reliable technique in screening the potency of anticancer drug candidates but plating conditions need to be carefully considered.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Rodaminas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Oxaliplatina/farmacologia , Reprodutibilidade dos Testes , Vorinostat/farmacologia
18.
Sci Rep ; 11(1): 23674, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880371

RESUMO

While cadherin (CDH) genes are aberrantly expressed in cancers, the functions of CDH genes in gastric cancer (GC) remain poorly understood. The clinical significance and molecular mechanisms of CDH genes in GC were assessed in this study. Data from a total of 1226 GC patients included in The Cancer Genome Atlas (TCGA) and Kaplan-Meier plotter database were used to independently explore the value of CDH genes in clinical application. The TCGA RNA sequencing dataset was used to explore the molecular mechanisms of CDH genes in GC. Using enrichment analysis tools, CDH genes were found to be related to cell adhesion and calcium ion binding in function. In TCGA cohort, 12 genes were found to be differentially expressed between GC para-carcinoma and tumor tissue. By analyzing GC patients in two independent cohorts, we identified and verified that CDH2, CDH6, CDH7 and CDH10 were significantly associated with a poor GC prognosis. In addition, CDH2 and CDH6 were used to construct a GC risk score signature that can significantly improve the accuracy of predicting the 5-year survival of GC patients. The GSEA approach was used to explore the functional mechanisms of the four prognostic CDH genes and their associated risk scores. It was found that these genes may be involved in multiple classic cancer-related signaling pathways, such as the Wnt and phosphoinositide 3-kinase signaling pathways in GC. In the subsequent CMap analysis, three small molecule compounds (anisomycin, nystatin and bumetanide) that may be the target molecules that determine the risk score in GC, were initially screened. In conclusion, our current study suggests that four CDH genes can be used as potential biomarkers for GC prognosis. In addition, a prognostic signature based on the CDH2 and CDH6 genes was constructed, and their potential functional mechanisms and drug interactions explored.


Assuntos
Biomarcadores Tumorais , Caderinas/genética , Família Multigênica , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Antineoplásicos/química , Antineoplásicos/farmacologia , Caderinas/metabolismo , Biologia Computacional/métodos , Suscetibilidade a Doenças , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Prognóstico , Curva ROC , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/tratamento farmacológico , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
19.
Cell Death Dis ; 13(1): 2, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34916483

RESUMO

Therapies halting the progression of fibrosis are ineffective and limited. Activated myofibroblasts are emerging as important targets in the progression of fibrotic diseases. Previously, we performed a high-throughput screen on lung fibroblasts and subsequently demonstrated that the inhibition of myofibroblast activation is able to prevent lung fibrosis in bleomycin-treated mice. High-throughput screens are an ideal method of repurposing drugs, yet they contain an intrinsic limitation, which is the size of the library itself. Here, we exploited the data from our "wet" screen and used "dry" machine learning analysis to virtually screen millions of compounds, identifying novel anti-fibrotic hits which target myofibroblast differentiation, many of which were structurally related to dopamine. We synthesized and validated several compounds ex vivo ("wet") and confirmed that both dopamine and its derivative TS1 are powerful inhibitors of myofibroblast activation. We further used RNAi-mediated knock-down and demonstrated that both molecules act through the dopamine receptor 3 and exert their anti-fibrotic effect by inhibiting the canonical transforming growth factor ß pathway. Furthermore, molecular modelling confirmed the capability of TS1 to bind both human and mouse dopamine receptor 3. The anti-fibrotic effect on human cells was confirmed using primary fibroblasts from idiopathic pulmonary fibrosis patients. Finally, TS1 prevented and reversed disease progression in a murine model of lung fibrosis. Both our interdisciplinary approach and our novel compound TS1 are promising tools for understanding and combating lung fibrosis.


Assuntos
Bleomicina/efeitos adversos , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/terapia , Pneumopatias/induzido quimicamente , Pneumopatias/terapia , Aprendizado de Máquina/normas , Miofibroblastos/metabolismo , Animais , Diferenciação Celular , Humanos , Fibrose Pulmonar Idiopática/patologia , Pneumopatias/patologia , Camundongos , Transfecção
20.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884798

RESUMO

Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca2+ signaling plays a pivotal role in different cellular processes, including cell proliferation and cell death. Remodeling Ca2+ signals by targeting the downstream effectors is considered an important hallmark in cancer progression. Despite recent structural analyses, no binding hypothesis for antagonists within the IP3-binding core (IBC) has been proposed yet. Therefore, to elucidate the 3D structural features of IP3R modulators, we used combined pharmacoinformatic approaches, including ligand-based pharmacophore models and grid-independent molecular descriptor (GRIND)-based models. Our pharmacophore model illuminates the existence of two hydrogen-bond acceptors (2.62 Å and 4.79 Å) and two hydrogen-bond donors (5.56 Å and 7.68 Å), respectively, from a hydrophobic group within the chemical scaffold, which may enhance the liability (IC50) of a compound for IP3R inhibition. Moreover, our GRIND model (PLS: Q2 = 0.70 and R2 = 0.72) further strengthens the identified pharmacophore features of IP3R modulators by probing the presence of complementary hydrogen-bond donor and hydrogen-bond acceptor hotspots at a distance of 7.6-8.0 Å and 6.8-7.2 Å, respectively, from a hydrophobic hotspot at the virtual receptor site (VRS). The identified 3D structural features of IP3R modulators were used to screen (virtual screening) 735,735 compounds from the ChemBridge database, 265,242 compounds from the National Cancer Institute (NCI) database, and 885 natural compounds from the ZINC database. After the application of filters, four compounds from ChemBridge, one compound from ZINC, and three compounds from NCI were shortlisted as potential hits (antagonists) against IP3R. The identified hits could further assist in the design and optimization of lead structures for the targeting and remodeling of Ca2+ signals in cancer.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neoplasias/tratamento farmacológico , Sinalização do Cálcio/fisiologia , Morte Celular/fisiologia , Proliferação de Células/fisiologia , Retículo Endoplasmático/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Modelos Moleculares , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...